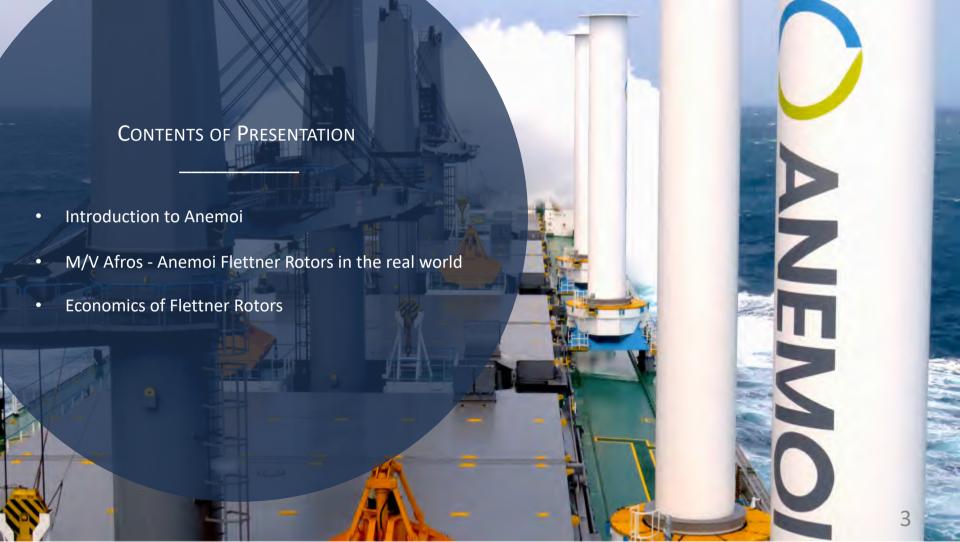
# ANEMO




# GREEN SHIPPING CONFERENCE 3RD ANNUAL MEETING OF EISAP 2019

M/V Afros – Ship of the Year 2018 "Flettner Rotors in the Real World"

15<sup>th</sup> May 2019 Nick Contopoulos





# **ABOUT ANEMOI**



GSS Greenest Marine Service Provider of the Year 2018





# **OUR HISTORY**







2007

Wind tunnel testing - NZ

Tank model test for stability & rolling analysis -UK

2009

Full scale proof of concept – UK

2013-2014

Design & manufacture of Prototype Composite Rotor V1.1 – UK

2014–2015

Instrumenting, balancing & testing of Prototype – UK 2016

Production of test results and FSAM - UK

2016-2017 Design &

approvals for 2 vessel installations

- UK, Greece, China

2017

Preparation of 82000DWT gearless Kamsarmax bulker - China

**2018-2019** 

Value Engineering & Rotor V1.3 production

Scale model testing – UK

2008

formed 2011

Current team

Design & installation of

Raising & Lowering Wind Engine - UK

2013-2014

Incorporation of Anemoi

2015

Prototype Trolley & Test bed – UK

2016-2017

Ultramax bulker (Rotor V1.2) -China

Installation on

2017

64000DWT geared

Sea Testing – Worldwide

**2018** 







# M/V AFROS







Winner of Lloyd's List Greek Shipping Awards 2018, Ship of Year

Winner of 2019 GREEN4SEA Dry Bulk Operator Award







# Flettner Rotors – Magnus Effect

### **THRUST**

Air is accelerated forward of the Rotor – low pressure



WIND DIRECTION

Air is decelerated aft of the Rotor – high pressure





# DELIVERING THE SYSTEM

#### UK.

- Anemoi HQ (London)
- Test sites (North England)
- Structural & Mechanical Consultants
- LR Classification society
- Rotor Manufacture

#### Greece:

- Blue Planet Shipping HQ
- Electrical & Control Consultants
- LR Classification Society

#### North America:

• High tech component supply



#### China:

- Blue Planet Shipping New Builds
- LR Classification Society
- Shipyard vessel preparation
- Low tech components supply



#### Europe:

- High tech component supply
- Ports Visited



SOLVING THE CHALLENGES — BULK CARRIERS & MV AFROS

- Movement system required
- Limited deck space
- Avoiding issues with:
  - Loading/unloading gear
  - Hatch Covers
  - Navigation and helicopter ops.
  - Deck outfittings



# WIND ENGINES AT SEA



#### Afros delivered in January 2018

- Ultramax 64k dwt Geared Bulk Carrier
- LR Class Ship, Marshall Island Flag State
- Owned/Operated by Blue Planet Shipping

| No. days at sea                 | 245                                        |
|---------------------------------|--------------------------------------------|
| Distance sailed                 | <b>75000 Nm</b> (3.5x around the equator!) |
| Longest voyage                  | <b>10806 Nm</b> (37 days, sailed 4 times)  |
| Maximum roll angle              | >20°                                       |
| Ports visited                   | 17                                         |
| Port delays due to Wind Engines | 0                                          |
| Operational Availability        | >97%                                       |



### **ELECTRICAL & CONTROL SYSTEM**

Control system automatically sets Rotor speed and direction based on wind – minimal crew interaction

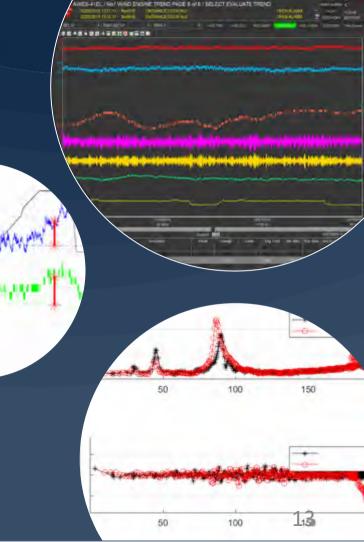
#### Variable load

- Input power varies with wind speed
- Mean input power ~15kW per Wind Engine

On the Afros is used in conjunction with other energy efficiency systems (e.g. VFD's on pumps & fans)





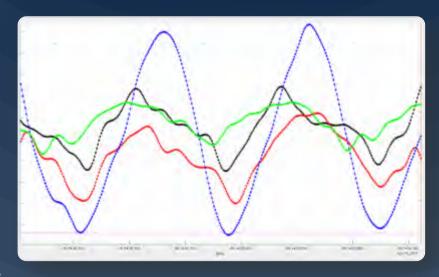

# DATA ACQUISITION

Automatic satellite upload of 500 data channels, 1Hz-1kHz

#### Current data acquisition includes:

- Vessel motion
- Environmental
- Engine room
- Navigational
- Rotor

Dashboard display of data available in real time in office

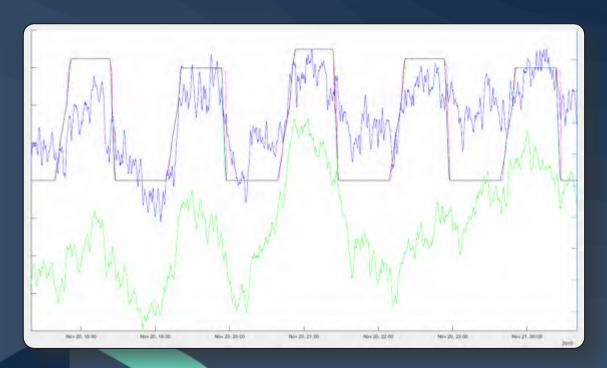



# DATA ANALYSIS — CONTINUOUS IMPROVEMENT

Rotors highly engineered for severe loads

Value engineering and continuous improvement are fundamental






#### Analysis to:

- Design a stronger, lighter, cheaper Rotor
- Reduce input power
- Improve and monitor component life



# DATA ANALYSIS - VERIFICATION



- Structured test programmes
- Comparison of at-sea results to existing land-based test site
- Validation of fuel saving predictions



# **ECONOMICS OF FLETTNER ROTORS**





# FACTORS REDUCING PAYBACK PERIOD

#### Ideal Vessels:

- Many days steaming
- Equipment owner pays fuel bill
- Best routes with good winds

#### Other Factors:

- Low cost of installation
- High oil price
- Reliability & availability
- Optimisation of controls & route





